By Topic

Design of tactile sensing systems for dextrous manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jacobsen, S.C. ; Center for Eng. Design, Utah Univ., Salt Lake City, UT, USA ; McGammon, I.D. ; Biggers, K.B. ; Phillips, R.P.

Preliminary work aimed at understanding the general issues and tradeoffs governing the design of extended tactile sensing systems is reviewed. General methods for estimating the bandwidths of line-addressed and matrix-addressed systems are presented. The proposed tactile sensing system incorporates four subsystems that permit the high-speed access of tactile data: (1) a transduction scheme; (2) a preprocessing scheme; (3) a multiplexing and transmission subsystem; and (4) tactile data selection techniques. Designs for implementation at each of these levels are presented. The designs emphasize practical necessities such as simplicity, reliability, and economy, along with plans to incorporate a tactile system into the Utah/MIT dextrous hand.<>

Published in:

Control Systems Magazine, IEEE  (Volume:8 ,  Issue: 1 )