By Topic

Topic Detection via Participation Using Markov Logic Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng, V. ; Dept. of Comput. Sci., Hong Kong Baptist Univ., Kowloon ; Li, C.H.

The advent of Web 2.0 enables the proliferation of online communities in which tremendous number of Internet users contribute and share enormous information. Proper exploitation of community structure help retrieving useful information and better understanding of their features. We employ Markov Logic Network to explore topic tracking by finding clusters, which represents latent topics, best fitting a set of rules. Rather than using contents in investigating discussions of a community, the user participation is used because it is believed that topics can be somehow reflected by the preferences of participation. User participation is also easier to process than text. The clustering results show this approach can reveal latent topics of a community effectively.

Published in:

Signal-Image Technologies and Internet-Based System, 2007. SITIS '07. Third International IEEE Conference on

Date of Conference:

16-18 Dec. 2007