By Topic

Time-Reversal Ultrawideband Breast Imaging: Pulse Design Criteria Considering Multiple Tumors With Unknown Tissue Properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yifan Chen ; Sch. of Eng., Univ. of Greenwich, Greenwich ; Gunawan, E. ; Kay Soon Low ; Shih-chang Wang
more authors

Pulse design is investigated for time-reversal (TR) imaging as applied to ultrawideband (UWB) breast cancer detection. Earlier it has been shown that a suitably-designed UWB pulse may help to improve imaging performance for a single-tumor breast phantom with predetermined lesion properties. The current work considers the following more general and practical situations: presence of multiple malignancies with unknown tumor size and dielectric properties. Four pulse selection criteria are proposed with each focusing on one of the following aspects: eliminating signal clutter generated by tissue inhomogeneities, canceling mutual interference among tumors, improving image resolution, and suppressing artifacts created by sidelobe of the target response. By applying the proposed criteria, the shape parameters of UWB waveforms with desirable characteristics are identified through search of all the possible pulses. Simulation example using a numerical breast phantom, comprised of two tumors and structured clutter distribution, demonstrates the effectiveness of the proposed approach. Specifically, a tradeoff between the image resolution and signal-to-clutter contrast (SCC) is observed in terms of selection of the excitation waveforms.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:56 ,  Issue: 9 )