By Topic

Implementation and Experimental Verification of a Smart Antenna System Operating at 60 GHz Band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Celik, N. ; Hawaii Center for Adv. Commun., Univ. of Hawaii at Manoa, Honolulu, HI ; Iskander, M.F. ; Emrick, R. ; Franson, S.J.
more authors

With the introduction of the unlicensed spectrum at the 60 GHz range, the development of communication systems with data rates in Gb/s range has become feasible. However, there are quite significant challenges at this frequency range such as high propagation loss, oxygen absorption, antenna alignment and unavailability of high-gain, high power circuit elements. In this paper we present a novel 2-channel hybrid smart-antenna system operating at 60 GHz band which can be used with an antenna switching system to improve the signal power performance and to serve as an automated alignment system. The critical system parameters for a smart-antenna system at this frequency are the transmitter to receiver distance, element spacing, and antenna beamwidth. As the widely known beamforming assumptions may not hold for some configurations, a more general beamforming formulation is given in the paper to serve as a guideline for system designers. The twist angle of array elements is introduced as a new array design parameter. By selecting the optimal twist angle to help overlap radiation patterns, the fine alignment of the transmit and receive beams is established electronically using beamforming, thus reducing the cost of deployment and maintenance of the 60 GHz indoor communication systems.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:56 ,  Issue: 9 )