By Topic

Effects of Nonlinear Micromagnetic Coupling on a Weak-Field Magnetoimpedance Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eason, Kwaku ; G. W. Woodruff Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA ; Kok-Meng Lee

We present a general harmonic formulation that takes into account, explicitly, the effects of micromagnetics for modeling the magnetic fields in a magnetoimpedance (MI) sensor element. We first relax assumptions commonly made to derive closed form solutions from a decoupled set of linear equations. We then solve numerically (using a meshless method formulated in point-collocation) the Maxwell and the Landau-Lifshitz-Gilbert equations simultaneously for the real and imaginary parts of the magnetic fields and magnetization in the context of a cylindrical amorphous MI sensor element. Comparing our results of the effects of coupling the equations of motion against published experimental data, we found striking differences both quantitatively and qualitatively between the coupled nonlinear and decoupled linear models. The coupled nonlinear harmonic formulation presented here results in improved accuracy and more consistent qualitative behavior in accordance to reported experimental observations, particularly in the weak field regime. Also presented here are spin wave amplitude distributions showing spatial dispersion within MI elements structures, which represents information lost in decoupled formulations.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 8 )