By Topic

Numerical simulation and experimental study of liquid-solid two-phase flow in nozzle of DIA Jet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guihua Hu ; CIMS & Robot Center, Shanghai Univ., Shanghai ; Wenhua Zhu ; Tao Yu ; Jin Yuan

The velocity of abrasive particles at the nozzle exit of Direct Injection Abrasive (DIA) Jet is a key factor affecting cutting capacity of jet. The powerful Computational Fluid Dynamics (CFD) analysis software Fluent is applied to numerical simulation of liquid-solid two-phase flow in the hard alloy nozzle of different cylindrical section length under a certain conditions. The optimum ratio of diameter to length is obtained when the particle velocities are the largest at the nozzle exit. The rule of velocity distribution of liquid-solid two-phase flow of the optimum nozzle is analyzed. The numerical control cutting machine tool of DIA Jet is adopted to finish cutting experiments on different variety of materials. The analytic results of experiments verify the results of numerical simulation.

Published in:

Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on

Date of Conference:

13-16 July 2008