By Topic

Advanced fault prediction in high-precision foundry production

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Penya, Y.K. ; S3 Lab., Deusto Technol. Found., Bilbao ; Bringas, P.G. ; Zabala, A.

Microshrinkages are known as probably the most difficult defects to avoid in high-precision foundry due to the large number of factors involved in their apparition. The presence of this failure renders the casting invalid, with the subsequent cost increment. Bayesian networks allow to model the foundry process as a probabilistic constellation of interrelated variables. In this way, after a suitable learning process, the Bayesian network is able to infer causal relationships; in other words, it may guess the value of a variable (for instance, the presence or not of a defect). Against this background, we present here the first microshrinkage prediction system that, upon the basis of a Bayesian network, is able to foresee the apparition of this defect in order to avoid it. Further, we have tested this system in two real foundries and present here the obtained results.

Published in:

Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on

Date of Conference:

13-16 July 2008