System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Robust filtering for uncertain discrete-time systems with uncertain noise covariance and uncertain observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohamed, S.M.K. ; Sch. of Eng. & Inf. Technol., Deakin Univ, Burwood, VIC ; Nahavandi, S.

The use of Kalman filtering is very common in state estimation problems. The problem with Kalman filters is that they require full prior knowledge about the system modeling. It is also assumed that all the observations are fully received. In real applications, the previous assumptions are not true all the time. It is hard to obtain the exact system model and the observations may be lost due to communication problems. In this paper, we consider the design of a robust Kalman filter for systems subject to uncertainties in the state and white noise covariances. The systems under consideration suffer from random interruptions in the measurements process. An upper bound for the estimation error covariance is proposed. The proposed upper bound is further minimized by selection of optimal filter parameters. Simulation example shows the effectiveness of the proposed filter.

Published in:

Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on

Date of Conference:

13-16 July 2008