By Topic

Topology Aware Task Allocation and Scheduling for Real-Time Data Fusion Applications in Networked Embedded Sensor Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Baokang Zhao ; Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong ; Meng Wang ; Zili Shao ; Jiannong Cao
more authors

In networked embedded sensor systems, data fusion is a viable solution to significantly reduce energy consumption while achieving real-time guarantee. Emerging data fusion applications demand efficient task allocation and scheduling techniques. However, existing approaches can not be effectively applied concerning both network topology and wireless communications. In this paper, we formally model TATAS, the topology-aware task allocation and scheduling problem for real-time data fusion applications, and show it is NP-complete. We also propose an efficient three-phase heuristic to solve the TATAS problem. We implement our technique and conduct experiments based on a simulation environment. Experimental results show that, as compared with traditional approaches, our technique can achieve significant energy saving and effectively meet the real-time requirements as well.

Published in:

Embedded and Real-Time Computing Systems and Applications, 2008. RTCSA '08. 14th IEEE International Conference on

Date of Conference:

25-27 Aug. 2008