By Topic

A CT MASH ΣΔ modulator with adaptive digital tuning for analog circuit imperfections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jipeng Wang ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ ; Jalali-Farahani, B.

This paper reports the transistor-level design of a continuous-time 2-1 MASH sigma delta modulator with digital adaptive tuning of the cancellation logic. The modulator is designed for broadband wireless applications and provides 12 bits of resolution for a 10 MHz signal bandwidth. A direct approach to design the CT MASH modulator is used which reduces the coupling between the MASH stages. The problems of excess loop delay and clock jitter are addressed. Excess delay compensation loops are used to overcome the problem of excess loop delay. Multi-bit quantizers with NRZ DACs are used to reduce the effect of clock jitter. It is shown that without calibration, the performance of a CT MASH modulator would be severely degraded due to different analog imperfections such as finite gain and bandwidth of the Opamp, clock jitter and even addition of the excess delay compensation loops. The catastrophic degradation is due to the leakage of lower order noise to the output of the modulator. An adaptive digital tuning of the digital filters is used in this design to regain the performance of the modulator in presence of the above errors. Simulation results show that the modulator provides the required resolution while consuming 20 mW of power from 1.8 V supply voltage.

Published in:

Circuits and Systems, 2008. MWSCAS 2008. 51st Midwest Symposium on

Date of Conference:

10-13 Aug. 2008