Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A new approach to the design, fabrication, and testing of chalcogenide-based multi-state phase-change nonvolatile memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ande, H.K. ; Dept. of Electr. & Comput. Eng., Boise State Univ., Boise, ID ; Busa, P. ; Balasubramanian, M. ; Campbell, K.A.
more authors

A new approach to developing, fabricating, and testing chalcogenide-based multi-state phase-change nonvolatile memory (NVM) is presented. A test chip is fabricated through the MOSIS service. Then post processing, in the Boise State University lab, is performed on the chip to add the chalcogenide material that forms the NVM. Each memory bit consists of an NMOS access transistor and the chalcogenide material placed between the metal3 of the test chip, connected to the access device, and a common, to all memory bits, electrode. This paper describes the design of the memory bit and of the test structures used for reliability and radiation testing. Fabrication and post-processing of the memory are also discussed.

Published in:

Circuits and Systems, 2008. MWSCAS 2008. 51st Midwest Symposium on

Date of Conference:

10-13 Aug. 2008