By Topic

A fault-tolerant FFT processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Choi, Y.-H. ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Malek, M.

A method is proposed for achieving fault tolerance by introducing a redundant stage for a special-purpose fast Fourier transform (FFT) processor. A concurrent error-detection technique, called recomputing by alternate path, is used to detect errors during normal operation. Once an error is detected, a faulty butterfly can be located with log (N +5) additional cycles. The method has 100% detection and location capability, regardless of the magnitude of the roundoff errors. A gracefully degraded reconfiguration using a redundant stage is introduced. This technique ensures a high improvement in reliability and availability. Hardware overhead is O(1/log N) with some additional comparators and switches. The method can be applied to other algorithms implementable on the butterfly structure

Published in:

Computers, IEEE Transactions on  (Volume:37 ,  Issue: 5 )