Cart (Loading....) | Create Account
Close category search window
 

Electromechanical Mode Online Estimation Using Regularized Robust RLS Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ning Zhou ; Pacific Northwest Nat. Lab., Richland, WA ; Trudnowski, D.J. ; Pierre, J.W. ; Mittelstadt, W.A.

This paper proposes a regularized robust recursive least squares (R3LS) method for online estimation of power-system electromechanical modes based on synchronized phasor measurement unit (PMU) data. The proposed method utilizes an autoregressive moving average exogenous (ARMAX) model to account for typical measurement data, which includes low-level pseudo-random probing, ambient, and ringdown data. A robust objective function is utilized to reduce the negative influence from nontypical data, which include outliers and missing data. A dynamic regularization method is introduced to help include a priori knowledge about the system and reduce the influence of under-determined problems. Based on a 17-machine simulation model, it is shown through the Monte Carlo method that the proposed R3LS method can estimate and track electromechanical modes by effectively using combined typical and nontypical measurement data.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.