By Topic

Six-DoF Haptic Rendering of Contact Between Geometrically Complex Reduced Deformable Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jernej Barbič ; MIT, Cambridge ; Doug L. James

Real-time evaluation of distributed contact forces between rigid or deformable 3D objects is a key ingredient of 6-DoF force-feedback rendering. Unfortunately, at very high temporal rates, there is often insufficient time to resolve contact between geometrically complex objects. We propose a spatially and temporally adaptive approach to approximate distributed contact forces under hard real-time constraints. Our method is CPU based, and supports contact between rigid or reduced deformable models with complex geometry. We propose a contact model that uses a point-based representation for one object, and a signed-distance field for the other. This model is related to the voxmap pointshell method (VPS), but gives continuous contact forces and torques, enabling stable rendering of stiff penalty-based distributed contacts. We demonstrate that stable haptic interactions can be achieved by point-sampling offset surfaces to input "polygon soup'' geometry using particle repulsion. We introduce a multi-resolution nested pointshell construction which permits level-of-detail contact force computation, and enables contact graceful degradation in close-proximity scenarios. Parametrically deformed distance fields are proposed to support contact between reduced deformable objects. We present several examples of 6-DoF haptic rendering of geometrically complex rigid and deformable objects in distributed contact at real-time kilohertz rates.

Published in:

IEEE Transactions on Haptics  (Volume:1 ,  Issue: 1 )