By Topic

Immunity based virus detection with process call arguments and user feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhou Li ; College of Computer Science, Wuhan University, 430072, China ; Yiwen Liang ; Zejun Wu ; Chengyu Tan

Detecting unknown virus is a challenging task. Most of the current virus detection approaches, such as anti-virus tools, require precognition of virus signatures for detection, but they are hard to detect unknown virus. In this paper, we present a new immunity based virus detection approach. This approach collects arguments of process calls instead of the sequence of process, which obtain more information of process, and then utilizes them to train detectors with real-valued negative selection (RVNS) algorithm. In the stage of testing, user feedback is analyzed to adjust the threshold between normal files and viruses. We took two experiments to evaluate the performance of the approach, and the detection rate achieved is 0.7, which proved this approach could cope with unknown virus.

Published in:

Bio-Inspired Models of Network, Information and Computing Systems, 2007. Bionetics 2007. 2nd

Date of Conference:

10-12 Dec. 2007