By Topic

An Approximate Simulation Approach to Symbolic Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tabuada, P. ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA

This paper introduces a methodology for the symbolic control of nonlinear systems based on an approximate notion of simulation relation. This notion generalizes existing exact notions of simulation and is completely characterized in terms of known stabilizability concepts. Equipped with this notion we show how, under certain stabilizability assumptions, we can construct finite or symbolic models for nonlinear control systems. Synthesizing controllers for the original control system can then be done by using supervisory control techniques on the finite models and by refining the resulting finite controllers to hybrid controllers enforcing the specification on the original continuous control system. The proposed design methodology can be seen as a correct-by-design way of obtaining both the feedback control laws as well as the control software responsible for deciding which law is executed and when.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 6 )