Cart (Loading....) | Create Account
Close category search window

{cal H}_{\infty } Output-Feedback Control Based on an FIR-Type Quasi-Deadbeat Observer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sung Hyun Kim ; Pohang Univ. of Sci. & Technol., Pohang ; Poo Gyeon Park

This technical note proposes a novel output-feedback control law based on a finite impulse response (FIR)-type quasi-deadbeat observer for linear systems. For nominal systems without disturbances, this technical note first establishes the deadbeat condition that reduces the state estimation error to zero within a finite time and verifies that all the hidden poles of the closed-loop system under the quasi-deadbeat observer-based control law are zero and that the separation principle holds true. In order to enhance the disturbance rejection capability for systems with random-work disturbances, on the structural merit of the FIR-type observer, we have proposed the conditions for an H infin quasi-deadbeat observer and an H infin stabilizer based on the predetermined observer, respectively.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 6 )

Date of Publication:

July 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.