By Topic

A Study on Cycle Attack by Multiaccess Interference in Multigranularity OCDM-Based Optical Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huang, S. ; Grad. Sch. of Eng., Osaka Univ., Osaka ; Baba, K.-i. ; Murata, M. ; Kitayama, K.

Previously, an optical code-division multiplexing (OCDM)-based network architecture was proposed to improve the wavelength utilization and to provide finer bandwidth granularities to users. By this technology, different channels using distinct optical codes (OCs) can be multiplexed onto the same wavelength, in which an OC is considered as the basic unit in lightpath provisioning. In the ideal case, multiaccess interference (MAI) inherent to the OCDM technology is assumed to be removed completely at intermediate nodes and cannot be propagated or accumulated along the lightpath. However, since no optical-electrical (O/E) or electrical-optical (E/O) conversion is allowed in transparent OCDM-based optical networks, the MAI cannot be removed completely at intermediate nodes with current all-optical regeneration techniques. As a result, the residual MAI may be propagated and accumulated along the lightpath and affect other active lightpaths carried by the same wavelength in the network. The affected active lightpaths may build unintended cycles along which the MAI is accumulated. Furthermore, this MAI keeps increasing when the lightpaths traversed by the cycle are active, which deteriorates the lightpath signal quality. Since this deterioration may eventually result in unacceptable signal quality and service disruption, the phenomenon caused by the MAI is termed as cycle attack in this paper. The explanations of the MAI propagation mechanism and the cycle attack problem are given. A depth-first search (DFS)-based algorithm is proposed to diagnose such cycle attacks under dynamic traffic conditions. The numerical results show that our DFS-based cycle attack diagnostic algorithm enables one to detect cycle attacks effectively, and the two-way resource reservation method associated with heuristic wavelength assignment is shown to mitigate the blocking performance degradation due to cycle attacks greatly with some proper wavelength and OC configuration.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 14 )