Cart (Loading....) | Create Account
Close category search window
 

Performance of High-Bitrate Multiple-Output Links Over Multimode Fiber With Intermodal Dispersion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Greenberg, M. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa ; Nazarathy, M. ; Orenstein, M.

We investigate novel transmission schemes over multimode fiber with multiple output detectors, providing more efficient utilization of the available spatial-temporal degrees of freedom of the system by combining coherent phase shift keying transmission with direct detection. We evaluate the statistics of the electrical charge generated by each detector, and its dependence on factors such as detector type, dimension and offset position. In the frequency-selective case, we reveal that temporal degrees of freedom resulting from nonoverlapping time pulses modify the decision variable statistics. We apply the ensuing model to propose a novel phase-modulated single input multiple output (SIMO) multimode fiber transmission system employing multiple detectors and multiple input multiple output (MIMO) space-time postdetection signal processing in order to mitigate the ISI stemming from intermodal dispersion.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 14 )

Date of Publication:

July15, 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.