Cart (Loading....) | Create Account
Close category search window
 

A Study of Self-Organized Criticality of Power System Under Cascading Failures Based on AC-OPF With Voltage Stability Margin

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shengwei Mei ; Dept. of Electr. Eng., Tsinghua Univ., Beijing ; Yixin Ni ; Gang Wang ; Shengyu Wu

From the perspective of self-organized criticality, this paper develops a novel model with AC-OPF and AC grid upgrade to study the cascading failures and blackouts in power systems, which overcomes some shortcomings of existing blackout models. The proposed model contains two types of dynamics, one is fast dynamics which simulates the serial blackouts in power systems, the other is slow dynamics which reflects the tendency of the power systems time evolution. This model also has voltage stability analysis function and can reveal critical characteristics from reactive power and voltage viewpoint. Simulation results of the IEEE 118-bus system with this model show that the fast dynamics can capture the cascading process and the criticality property in micro scale. Besides, the macro scale of self-organized criticality of power systems can be revealed from the mean value of fractional overloads and the ratio of total load demand to the total network transfer capability. Furthermore, the voltage stability criticality status could be detected from the eigenvalue with the smallest magnitude through reactive power and voltage relevant modal analysis.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.