By Topic

An Improvement of Face Detection Using AdaBoost with Color Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yan-Wen Wu ; Dept. of Inf. Technol., Huazhong Normal Univ., Wuhan ; Xue-Yi Ai

In this paper an improvement of the performance for detecting faces in color images is proposed. This improvement is achieved by integrating the AdaBoost learning algorithm with skin color information. Firstly, the system searches the entire image for face candidates by skin color segmentation and morphological operations, then a powerful feature selection algorithm, AdaBoost is performed to automatically select a small set of features in order to achieve robust detection results, the final face regions are obtained via scanning these face candidates using the cascaded classifier, which is constructed by AdaBoost algorithm.The complete system is tested on a variety of color images and compared with other relevant methods. Experimental results show the proposed system obtains competitive results and improves detection performance substantially.

Published in:

Computing, Communication, Control, and Management, 2008. CCCM '08. ISECS International Colloquium on  (Volume:1 )

Date of Conference:

3-4 Aug. 2008