By Topic

Optimal Rescheduling of Generators for Congestion Management Based on Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dutta, S. ; Dept. of Electr. Eng., Banaras Hindu Univ., Varanasi ; Singh, S.P.

Power system congestion is a major problem that the system operator (SO) would face in the post-deregulated era. Therefore, investigation of techniques for congestion-free wheeling of power is of paramount interest. One of the most practiced and an obvious technique of congestion management is rescheduling the power outputs of generators in the system. However, all generators in the system need not take part in congestion management. Development of sound formulation and appropriate solution technique for this problem is aimed in this paper. Contributions made in the present paper are twofold. Firstly a technique for optimum selection of participating generators has been introduced using generator sensitivities to the power flow on congested lines. Secondly this paper proposes an algorithm based on particle swarm optimization (PSO) which minimizes the deviations of rescheduled values of generator power outputs from scheduled levels. The PSO algorithm, reported in this paper, handles the binding constraints by a technique different from the traditional penalty function method. The effectiveness of the proposed methodology has been analyzed on IEEE 30-bus and 118-bus systems and the 39 -bus New England system.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 4 )