By Topic

Adapted One-versus-All Decision Trees for Data Stream Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hashemi, S. ; Monash Univ., Clayton, VIC ; Ying Yang ; Mirzamomen, Z. ; Kangavari, M.

One versus all (OVA) decision trees learn k individual binary classifiers, each one to distinguish the instances of a single class from the instances of all other classes. Thus OVA is different from existing data stream classification schemes whose majority use multiclass classifiers, each one to discriminate among all the classes. This paper advocates some outstanding advantages of OVA for data stream classification. First, there is low error correlation and hence high diversity among OVA's component classifiers, which leads to high classification accuracy. Second, OVA is adept at accommodating new class labels that often appear in data streams. However, there also remain many challenges to deploy traditional OVA for classifying data streams. First, as every instance is fed to all component classifiers, OVA is known as an inefficient model. Second, OVA's classification accuracy is adversely affected by the imbalanced class distribution in data streams. This paper addresses those key challenges and consequently proposes a new OVA scheme that is adapted for data stream classification. Theoretical analysis and empirical evidence reveal that the adapted OVA can offer faster training, faster updating and higher classification accuracy than many existing popular data stream classification algorithms.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 5 )