Cart (Loading....) | Create Account
Close category search window
 

Energy efficient i-cache using multiple line buffers with prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ali, K. ; Sch. of Comput., Queens Univ., Kingston, ON ; Aboelaze, M. ; Datta, S.

Modern microprocessors dedicate a large portion of the chip area to the cache. Decreasing the energy consumption of the microprocessor, which is a very important design goal especially for small, battery powered, devices, depends on decreasing the energy consumption of the memory/cache system in the microprocessor. The authors investigate the energy consumption in caches and present a novel cache architecture for reduced energy instruction caches. Our cache architecture consists of the L1 cache, multiple line buffers and a prediction mechanism to predict which line buffer, or L1 cache, to access next. In the proposed technique, the authors use the multiple line buffers as a continuous small filter cache that can catch most of the cache access but they access only a single line buffer, thus reducing the energy consumption of the cache. They used simulation to evaluate the proposed architecture and to compare it with the HotSpot cache, filter cache and single line buffer cache. Simulation results show that the approach is slightly faster than the above mentioned caches, and it consumes considerably less energy than any of these cache architectures.

Published in:

Computers & Digital Techniques, IET  (Volume:2 ,  Issue: 5 )

Date of Publication:

September 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.