By Topic

Finite-Dimensional Projection for Classification and Statistical Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this paper, a new method for the binary classification problem is studied. It relies on empirical minimization of the hinge risk over an increasing sequence of finite-dimensional spaces. A suitable dimension is picked by minimizing the regularized risk, where the regularization term is proportional to the dimension. An oracle-type inequality is established for the excess generalization risk (i.e., regret to Bayes) of the procedure, which ensures adequate convergence properties of the method. We suggest to select the considered sequence of subspaces by applying kernel principal components analysis (KPCA). In this case, the asymptotical convergence rate of the method can be better than what is known for the support vector machine (SVM). Exemplary experiments are presented on benchmark data sets where the practical results of the method are comparable to the SVM.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 9 )