By Topic

Identifying Codes and Covering Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laifenfeld, M. ; Dept. of Electr. & Comput. Eng., Boston Univ., Boston, MA ; Trachtenberg, A.

The identifying code problem for a given graph involves finding a minimum set of vertices whose neighborhoods uniquely overlap at any given graph vertex. Initially introduced in 1998, this problem has demonstrated its fundamental nature through a wide variety of applications, such as fault diagnosis, location detection, and environmental monitoring, in addition to deep connections to information theory, superimposed and covering codes, and tilings. This work establishes efficient reductions between the identifying code problem and the well-known set-covering problem, resulting in a tight hardness of approximation result and novel, provably tight polynomial-time approximations. The main results are also extended to r -robust identifying codes and analogous set (2r+1)-multicover problems. Finally, empirical support is provided for the effectiveness of the proposed approximations, including good constructions for well-known topologies such as infinite two-dimensional grids.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 9 )