By Topic

The Extraction and Complexity Limits of Graphical Models for Linear Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Halford, T.R. ; TrellisWare Technol., Inc., San Diego, CA ; Chugg, K.M.

Two broad classes of graphical modeling problems for codes can be identified in the literature: constructive and extractive problems. The former class of problems concern the construction of a graphical model in order to define a new code. The latter class of problems concern the extraction of a graphical model for a (fixed) given code. The design of a new low-density parity-check code for some given criteria (e.g., target block length and code rate) is an example of a constructive problem. The determination of a graphical model for a classical linear block code that implies a decoding algorithm with desired performance and complexity characteristics is an example of an extractive problem. This work focuses on extractive graphical model problems and aims to lay out some of the foundations of the theory of such problems for linear codes. The primary focus of this work is a study of the space of all graphical models for a (fixed) given code. The tradeoff between cyclic topology and complexity in this space is characterized via the introduction of a new bound: the forest-inducing cut-set bound (FI-CSB). The proposed bound provides a more precise characterization of this tradeoff than that which can be obtained using existing tools (e.g., the CSB) and can be viewed as a generalization of the square-root bound for tail-biting trellises to graphical models with arbitrary cyclic topologies. Searching the space of graphical models for a given code is then enabled by introducing a set of basic graphical model transformation operations that are shown to span this space. Finally, heuristics for extracting novel graphical models for linear block codes using these transformations are investigated.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 9 )