Cart (Loading....) | Create Account
Close category search window
 

Two Classes of Quadratic APN Binomials Inequivalent to Power Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Budaghyan, L. ; Dept. of Inf., Univ. of Bergen, Bergen ; Carlet, C. ; Leander, G.

This paper introduces the first found infinite classes of almost perfect nonlinear (APN) polynomials which are not Carlet-Charpin-Zinoviev (CCZ)-equivalent to power functions (at least for some values of the number of variables). These are two classes of APN binomials from F2n to F2n (for n divisible by 3, resp., 4). We prove that these functions are extended affine (EA)-inequivalent to any power function and that they are CCZ-inequivalent to the Gold, Kasami, inverse, and Dobbertin functions when n ges 12. This means that for n even they are CCZ-inequivalent to any known APN function. In particular, for n = 12,20,24, they are therefore CCZ-inequivalent to any power function.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.