By Topic

Optimal Estimation in Networked Control Systems Subject to Random Delay and Packet Drop

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schenato, L. ; Fac. of Inf. Eng., Padova Univ., Padova

In this note, we study optimal estimation design for sampled linear systems where the sensors measurements are transmitted to the estimator site via a generic digital communication network. Sensor measurements are subject to random delay or might even be completely lost. We show that the minimum error covariance estimator is time-varying, stochastic, and it does not converge to a steady state. Moreover, the architecture of this estimator is independent of the communication protocol and can be implemented using a finite memory buffer if the delivered packets have a finite maximum delay. We also present two alternative estimator architectures that are more computationally efficient and provide upper and lower bounds for the performance of the time-varying estimator. The stability of these estimators does not depend on packet delay but only on the overall packet loss probability. Finally, algorithms to compute critical packet loss probability and estimators performance in terms of their error covariance are given and applied to some numerical examples.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 5 )