Cart (Loading....) | Create Account
Close category search window

On Time-Varying Bit-Allocation Maintaining Stability and Performance: A Convex Parameterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarma, S.V. ; Massachusetts Inst. of Technol., Cambridge, MA ; Dahleh, M.A. ; Salapaka, S.

In this paper, we analyze and derive conditions for stability of a feedback system in which the plant and feedback controller are separated by a noiseless finite-rate communication channel. We allow for two deterministic classes of reference inputs to excite the system, and derive sufficient conditions for input-output (IO) stability as a function of the encoding strategy and controller. We first construct an encoder as a quantizer that can have infinite memory and can be time-varying, in that the strategy it follows to allocate a total of R bits to its inputs, is a function of time. This construction of the quantizer leads to the result that the set of allocation strategies that maintains stability for each class of reference signals is convex, allowing the search for the most efficient strategy to ensure stability to be formulated as a convex optimization problem. We then synthesize quantizers and time-varying controllers to minimize the rate required for stability and to track commands. Examples presented in this paper demonstrate how this framework enables computationally efficient methods for simultaneously designing quantizers and controllers for given plants. Furthermore, we observe that our finite memory quantizers that minimize the rate required for stability do not reduce to trivial memoryless bit-allocation strategies.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 5 )

Date of Publication:

June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.