By Topic

Optimal Training Design for Channel Estimation in Decode-and-Forward Relay Networks With Individual and Total Power Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feifei Gao ; Inst. for Infocomm Res., A*STAR, Singapore ; Tao Cui ; Nallanathan, A.

In this paper, we study the channel estimation and the optimal training design for relay networks that operate under the decode-and-forward (DF) strategy with the knowledge of the interference covariance. In addition to the total power constraint on all the relays, we introduce individual power constraint for each relay, which reflects the practical scenario where all relays are separated from one another. Considering the individual power constraint for the relay networks is the major difference from that in the traditional point-to-point communication systems where only a total power constraint exists for all colocated antennas. Two types of channel estimation are involved: maximum likelihood (ML) and minimum mean square error (MMSE). For ML channel estimation, the channels are assumed as deterministic and the optimal training results from an efficient multilevel waterfilling type solution that is derived from the majorization theory. For MMSE channel estimation, however, the second-order statistics of the channels are assumed known and the general optimization problem turns out to be nonconvex. We instead consider three special yet reasonable scenarios. The problem in the first scenario is convex and could be efficiently solved by state-of-the-art optimization tools. Closed-form waterfilling type solutions are found in the remaining two scenarios, of which the first one has an interesting physical interpretation as pouring water into caves.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 12 )