Cart (Loading....) | Create Account
Close category search window
 

A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Honghai Liu ; Inst. of Ind. Res., Univ. of Portsmouth, Portsmouth

This paper proposes a novel framework for describing articulated robot kinematics motion with the goal of providing a unified representation by combining symbolic or qualitative functions and numerical sensing and control tasks in the context of intelligent robotics. First, fuzzy qualitative robot kinematics that provides theoretical preliminaries for the proposed robot motion representation is revisited. Second, a fuzzy qualitative framework based on clustering techniques is presented to connect numerical and symbolic robot representations. Built on the k-bb AGOP operator (an extension of the ordered weighted aggregation operators), k-means and Gaussian functions are adapted to model a multimodal density of fuzzy qualitative kinematics parameters of a robot in both Cartesian and joint spaces; on the other hand, a mixture regressor and interpolation method are employed to convert Gaussian symbols into numerical values. Finally, simulation results in a PUMA 560 robot demonstrated that the proposed method effectively provides a two-way connection for robot representations used for both numerical and symbolic robotic tasks.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 6 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.