By Topic

Implementation of wireless power transfer and communications for an implantable ocular drug delivery system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Tang, T.B. ; Sch. of Eng. & Electron., Edinburgh Univ., Edinburgh ; Smith, S. ; Flynn, B.W. ; Stevenson, J.T.M.
more authors

A wireless power transfer and communication system based on near-field inductive coupling has been designed and implemented. The feasibility of using such a system to remotely control drug release from an implantable drug delivery system is addressed. The architecture of the wireless system is described and the signal attenuation over distance in both water and phosphate buffered saline is studied. Additionally, the health risk due to exposure to radio frequency (RF) radiation is examined using a biological model. The experimental results demonstrate that the system can trigger the release of drug within 5 s, and that such short exposure to RF radiation does not produce any significant ( les1degC) heating in the biological model. The conclusion of the work is that this system could replace a chemical battery in an implantable system, eliminating the risks associated with battery failure and leakage and also allowing more compact designs for applications such as drug delivery.

Published in:

Nanobiotechnology, IET  (Volume:2 ,  Issue: 3 )