By Topic

Optimal precoder design for mimo systems using decision feedback receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tingting Liu ; Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada ; Jian-Kang Zhang ; Kon Max Wong

For precoder design problems in a multi-input multi-output (MIMO) communication system, perfect knowledge of the channel state information (CSI) at both the transmitter and the receiver is usually required. However, it is often difficult to provide sufficiently timely and accurate feedback of CSI from the receiver to the transmitter for such designs to be practically viable. In this paper, we consider the optimum design of a precoder for a wireless communication link having M transmitter antennas and N receiver antennas (M < N), in which the channels are assumed to be flat fading and may be correlated. We assume that full CSI is known at the receiver, but only the first- and second-order statistics of the channels are available at the transmitter. Our goal is to come up with an efficient design of the optimal precoder for such a MIMO system by minimizing the average arithmetic mean-squared error (MSE) of zero-forcing decision feedback (ZF-DF) detection subject to a constraint on the total transmitting power. We transform this non-convex optimization problem into a convex geometrical programming problem, which can then be efficiently solved using an interior point method. For the case when the transmission channels are uncorrelated, a closed-form solution of the optimum precoder has been obtained. The superior performance of our MIMO system equipped with the optimum precoder is verified by computer simulations.

Published in:

2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop

Date of Conference:

21-23 July 2008