By Topic

Power quality event detection and recognition using wavelet analysis and intelligent neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia Ruijuan ; Hebei Univ. of Eng., Handan ; Xu Chunxia

A novel method to detect short duration disturbance of distribution power system combing complex wavelet network with the improved back-propagation algorithm is presented. The paper tries to explain to design complex supported orthogonal wavelets by compactly supported orthogonal real wavelets, and then explore the extraction of disturbance signal to obtain the feature information, and finally propose several novel wavelet combined information to analyze the disturbance signal, superior to real wavelet analysis result. The feature obtained from WT coefficients are inputted into wavelet network for power quality disturbance pattern recognition. The power quality disturbance recognition model is established and the improved back-propagation algorithm is used to fulfill the network structure and parameter identification. By means of choosing enough samples to train the recognition model, the type of disturbance can be obtained when signal representing fault is inputted to the trained network. The results of simulation analysis show that the complex wavelet transform combined with wavelet network are more sensitive to signal singularity, and found to be significant improvement over current methods in real-time detection and better noise proof ability.

Published in:

Control Conference, 2008. CCC 2008. 27th Chinese

Date of Conference:

16-18 July 2008