By Topic

Inversion-Mode Self-Aligned \hbox {In}_{0.53}\hbox {Ga}_{0.47}\hbox {As} N-Channel Metal-Oxide-Semiconductor Field-Effect Transistor With HfAlO Gate Dielectric and TaN Metal Gate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lin, J.Q. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Lee, S.J. ; Oh, H.J. ; Lo, G.Q.
more authors

A high-performance In0.53Ga0.47As n-channel MOSFET integrated with a HfAlO gate dielectric and a TaN gate electrode was fabricated using a self-aligned process. After HCl cleaning and (NH4)2S treatment, the chemical vapor deposition HfAlO growth on In0.53Ga0.47As exhibits a high-quality interface. The fabricated nMOSFET with a HfAlO gate oxide thickness of 11.7 nm shows a gate leakage current density as low as 2.5 times 10-7 A/cm2 at Vg of 1 V. Excellent inversion capacitance was illustrated. Silicon implantation was self-aligned to the gate, and low-temperature activation for source and drain was achieved by rapid thermal annealing at 600degC for 1 min. The source and drain junction exhibited an excellent rectifying characteristic and high forward current. The result of an In0.53Ga0.47As nMOSFET shows well-performed Id-Vd and Id-Vg characteristics. The record high peak electron mobility of 1560 cm2/Vs has been achieved without any correction methods considering interface charge and parasitic resistance.

Published in:

Electron Device Letters, IEEE  (Volume:29 ,  Issue: 9 )