By Topic

Image Thresholding Using Graph Cuts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wenbing Tao ; Sch. of Comput. Sci. & Technol., Huazhong Univ. of Sci. & Technol., Wuhan ; Hai Jin ; Yimin Zhang ; Liman Liu
more authors

A novel thresholding algorithm is presented in this paper to improve image segmentation performance at a low computational cost. The proposed algorithm uses a normalized graph-cut measure as thresholding principle to distinguish an object from the background. The weight matrices used in evaluating the graph cuts are based on the gray levels of the image, rather than the commonly used image pixels. For most images, the number of gray levels is much smaller than the number of pixels. Therefore, the proposed algorithm requires much smaller storage space and lower computational complexity than other image segmentation algorithms based on graph cuts. This fact makes the proposed algorithm attractive in various real-time vision applications such as automatic target recognition. Several examples are presented, assessing the superior performance of the proposed thresholding algorithm compared with the existing ones. Numerical results also show that the normalized-cut measure is a better thresholding principle compared with other graph-cut measures, such as average-cut and average-association ones.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:38 ,  Issue: 5 )