By Topic

Model-Based Prognostic Techniques Applied to a Suspension System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianhui Luo ; Dept. of Electr. & Comput. Eng., Univ. of Connecticut, Storrs, CT ; Pattipati, K.R. ; Liu Qiao ; Chigusa, S.

Conventional maintenance strategies, such as corrective and preventive maintenance, are not adequate to fulfill the needs of expensive and high availability transportation and industrial systems. A new strategy based on forecasting system degradation through a prognostic process is required. The recent advances in model-based design technology have realized significant time savings in product development cycle. These advances facilitate the integration of model-based diagnosis and prognosis of systems, leading to condition-based maintenance and increased availability of systems. With an accurate simulation model of a system, diagnostics and prognostics can be synthesized concurrently with system design. In this paper, we develop an integrated prognostic process based on data collected from model-based simulations under nominal and degraded conditions. Prognostic models are constructed based on different random load conditions (modes). An interacting multiple model (IMM) is used to track the hidden damage. Remaining-life prediction is performed by mixing mode-based life predictions via time-averaged mode probabilities. The solution has the potential to be applicable to a variety of systems, ranging from automobiles to aerospace systems.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:38 ,  Issue: 5 )