Cart (Loading....) | Create Account
Close category search window
 

Low-Density Parity-Check Coded Recording Systems With Run-Length-Limited Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hsin-Yi Chen ; Grad. Inst. of Commun. Eng., Nat. Taiwan Univ., Taipei ; Mao-Chao Lin ; Yeong-Luh Ueng

We propose two techniques for the low-density parity-check (LDPC) coded partial response channel with run-length-limited (RLL) constraints. The first is a modification of the selective flipping technique so that side information is not needed. The second is based on the estimation of flipped bits for the selective flipping technique. The second technique can achieve significant performance improvement over the simple selective flipping technique either with side information or without side information. We also incorporate these two techniques into a known technique to design LDPC coded recording systems that can meet strict RLL constraints without performance degradation.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.