Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Demagnetization Assessment for Three-Phase Tubular Brushless Permanent-Magnet Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Wang, J. ; Dept. of Electron. & Electr. Eng., Sheffield Univ., Sheffield ; Wang, W. ; Atallah, K. ; Howe, D.

We describe an analytical technique for assessing the risk of partial demagnetization in tubular permanent-magnet (PM) machines. The technique establishes analytical expressions for the open-circuit and armature reaction fields in the cylindrical coordinate system and superposes the fields in the permanent-magnet regions to determine the extent to which the magnets may be partially irreversibly demagnetized. We have applied the technique to a quasi-Halbach magnetized tubular PM machine equipped with a modular stator winding, and have validated the predictions by finite-element analysis. We found that partial demagnetization may occur even under an open-circuit operating condition when the machine is operating at high temperature. We propose alternative Halbach magnetization distributions that improve the demagnetization withstand capability. The analytical technique provides a computationally efficient tool for identifying regions that are prone to partial demagnetization and for assessing the consequences. It enables the risk of demagnetization to be fully assessed at the design stage so as to achieve a robust machine, particularly when operating in harsh environments.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 9 )