Cart (Loading....) | Create Account
Close category search window
 

Demagnetization Assessment for Three-Phase Tubular Brushless Permanent-Magnet Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, J. ; Dept. of Electron. & Electr. Eng., Sheffield Univ., Sheffield ; Wang, W. ; Atallah, K. ; Howe, D.

We describe an analytical technique for assessing the risk of partial demagnetization in tubular permanent-magnet (PM) machines. The technique establishes analytical expressions for the open-circuit and armature reaction fields in the cylindrical coordinate system and superposes the fields in the permanent-magnet regions to determine the extent to which the magnets may be partially irreversibly demagnetized. We have applied the technique to a quasi-Halbach magnetized tubular PM machine equipped with a modular stator winding, and have validated the predictions by finite-element analysis. We found that partial demagnetization may occur even under an open-circuit operating condition when the machine is operating at high temperature. We propose alternative Halbach magnetization distributions that improve the demagnetization withstand capability. The analytical technique provides a computationally efficient tool for identifying regions that are prone to partial demagnetization and for assessing the consequences. It enables the risk of demagnetization to be fully assessed at the design stage so as to achieve a robust machine, particularly when operating in harsh environments.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.