Cart (Loading....) | Create Account
Close category search window
 

Optimality and Complexity of Pure Nash Equilibria in the Coverage Game

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xin Ai ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Srinivasan, V. ; Chen-Khong Tham

In this paper, we investigate the coverage problem in wireless sensor networks using a game theory method. We assume that nodes are randomly scattered in a sensor field and the goal is to partition these nodes into K sets. At any given time, nodes belonging to only one of these sets actively sense the field. A key challenge is to achieve this partition in a distributed manner with purely local information and yet provide near optimal coverage. We appropriately formulate this coverage problem as a coverage game and prove that the optimal solution is a pure Nash equilibrium. Then, we design synchronous and asynchronous algorithms, which converge to pure Nash equilibria. Moreover, we analyze the optimality and complexity of pure Nash equilibria in the coverage game. We prove that, the ratio between the optimal coverage and the worst case Nash equilibrium coverage, is upper bounded by 2 - 1/m+1 (m is the maximum number of nodes, which cover any point, in the Nash equilibrium solution s*). We prove that finding pure Nash equilibria in the general coverage game is PLS-complete, i.e. "as hard as that of finding a local optimum in any local search problem with efficient computable neighbors". Finally, via extensive simulations, we show that, the Nash equilibria coverage performance is very close to the optimal coverage and the convergence speed is sublinear. Even under the noisy environment, our algorithms can still converge to the pure Nash equilibria.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 7 )

Date of Publication:

September 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.