By Topic

Joint Channel and Power Allocation in Wireless Mesh Networks: A Game Theoretical Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Song ; Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL ; Chi Zhang ; Yuguang Fang

This paper addresses the throughput maximization problem in wireless mesh networks. For the case of cooperative access points, we present a negotiation-based throughput maximization algorithm which adjusts the operating channel and power level among access points automatically, from a game-theoretical perspective. We show that this algorithm converges to the optimal channel and power assignment which yields the maximum overall throughput with arbitrarily high probability. Moreover, we analyze the scenario where access points belong to different regulation entities and hence non-cooperative. The long- term behavior and corresponding performance are investigated and the analytical results are verified by simulations.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 7 )