By Topic

Competitive Design of Multiuser MIMO Systems Based on Game Theory: A Unified View

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Scutari, G. ; Dept. of INFOCOM, Rome Univ., Rome ; Palomar, D.P. ; Barbarossa, S.

This paper considers the noncooperative maximization of mutual information in the Gaussian interference channel in a fully distributed fashion via game theory. This problem has been studied in a number of papers during the past decade for the case of frequency-selective channels. A variety of conditions guaranteeing the uniqueness of the Nash Equilibrium (NE) and convergence of many different distributed algorithms have been derived. In this paper we provide a unified view of the state-of- the-art results, showing that most of the techniques proposed in the literature to study the game, even though apparently different, can be unified using our recent interpretation of the waterfilling operator as a projection onto a proper polyhedral set. Based on this interpretation, we then provide a mathematical framework, useful to derive a unified set of sufficient conditions guaranteeing the uniqueness of the NE and the global convergence of waterfilling based asynchronous distributed algorithms. The proposed mathematical framework is also instrumental to study the extension of the game to the more general MIMO case, for which only few results are available in the current literature. The resulting algorithm is, similarly to the frequency-selective case, an iterative asynchronous MIMO waterfilling algorithm. The proof of convergence hinges again on the interpretation of the MIMO waterfilling as a matrix projection, which is the natural generalization of our results obtained for the waterfilling mapping in the frequency-selective case.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 7 )