Cart (Loading....) | Create Account
Close category search window

Non-Atomic Games for Multi-User Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bonneau, N. ; MAESTRO, INRIA Sophia Antipolis, Sophia Antipolis ; Debbah, M. ; Altman, E. ; Hjorungnes, A.

In this contribution, the performance of a multiuser system is analyzed in the context of frequency selective fading channels. Using game theoretic tools, a useful framework is provided in order to determine the optimal power allocation when users know only their own channel (while perfect channel state information is assumed at the base station). This scenario illustrates the case of decentralized schemes, where limited information on the network is available at the terminal. Various receivers are considered, namely the matched filter, the MMSE filter and the optimum filter. The goal of this paper is to extend previous work, and to derive simple expressions for the non-cooperative Nash equilibrium as the number of mobiles becomes large and the spreading length increases. To that end two asymptotic methodologies are combined. The first is asymptotic random matrix theory which allows us to obtain explicit expressions of the impact of all other mobiles on any given tagged mobile. The second is the theory of non-atomic games which computes good approximations of the Nash equilibrium as the number of mobiles grows.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 7 )

Date of Publication:

September 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.