By Topic

Ultraviolet Electroluminescence From n-ZnO–SiO _{2} –ZnO Nanocomposite/p-GaN Heterojunction Light-Emitting Diodes at Forward and Reverse Bias

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
M. K. Wu ; Dept. of Mater. Sci. & Eng., Nat. Taiwan Univ., Taipei ; Y. T. Shih ; W. C. Li ; H. C. Chen
more authors

Ultraviolet (UV) light-emitting diodes composed of n-ZnO:Al-SiO2-ZnO nanocomposite/p-GaN:Mg heterojunction were fabricated on the (0002) Al2O3 substrate. A SiO2 layer embedded with ZnO nanodots was prepared on the p-type GaN using spin-on coating of SiO2 nanoparticles together with atomic layer deposition (ALD). An n-type Al-doped ZnO layer was deposited also by ALD. The SiO2-ZnO nanocomposite layer accomplishes a role of the current blocking layer and also causes, by its low refractive index, the increase in the light extraction efficiency from n-ZnO. Significant UV electroluminescence from n-ZnO was achieved at a low forward-bias current of 1.8 mA. Strong UV emission arising from impact ionization in GaN, ZnO, and GaN:Mg states was also observed at reverse breakdown bias.

Published in:

IEEE Photonics Technology Letters  (Volume:20 ,  Issue: 21 )