By Topic

Packet size process modeling of measured self-similar network traffic with defragmentation method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Fras ; Faculty of electrical engineering and computer science, University of Maribor, Smetanova ulica 17, 2000, Slovenia ; J. Mohorko ; Z. Cucej

Analysis and modeling of telecommunication networks by simulations has become one of the main tools in the process of telecommunication-networkspsila planning and upgrading. Knowledge regarding the statistical modeling of network traffic is very important. Here we tend towards modeled network traffic which would be the best possible approximation of the measured traffic. Throughout our research in the field of self-similar network traffic we have faced problem of statistically describing the packet-size process. We have noticed that small discrepancies between measured histograms and estimated probability density functions, as used in traffic generator models, lead to large discrepancy between measured and modeled network traffics. In this research we tried to estimate the probability density function of a measured histogram for process-packet size, in such way that would decrease these discrepancies. For this purpose, we have developed a novel method of modeling network traffic, which is based on the defragmentation of measured traffic. Using this defragmentation method, we can estimate parameters of filespsila size process, from captured packets and use these statistical parameters for traffic generation, via the OPNET simulation tool. From these simulations, we can show that this newly-developed method decreases discrepancy between packet size process histograms of measured and simulated network traffics. This consequently leads to a decrease in discrepancy between measured and simulated network traffics.

Published in:

2008 15th International Conference on Systems, Signals and Image Processing

Date of Conference:

25-28 June 2008