By Topic

Novel approaches for face recognition: Template-matching using Dynamic Time Warping and LSTM neural network supervised classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Levada, A. ; Phys. Insitute of Sao Carlos, Univ. of Sao Paulo, Sao Paulo ; Correa, D.C. ; Salvadeo, D.H.P. ; Saito, J.H.
more authors

This paper presents novel methodologies for face recognition: template-matching using Dynamic Time Warping (DTW) and Long-Short-Term-Memory (LSTM) neural network supervised classification. The advantage of the DTW algorithm is that it requires only one prototype (sample) for each class, that is, a single representative template is enough for classification purposes. The LSTM network is a novel recurrent network architecture that implements an appropriate gradient-based learning algorithm. It overcomes the vanishing-gradient problem. Experiments with images from the MIT-CBCL face recognition database provided good results for both approaches. For DTW, the obtained results indicate that the proposed method is robust against the presence of random noise on observations and templates, since it is capable to deal with unpredictable variations. The LSTM training achieved good performance even with small feature sets.

Published in:

Systems, Signals and Image Processing, 2008. IWSSIP 2008. 15th International Conference on

Date of Conference:

25-28 June 2008