By Topic

An interactive video content-based retrieval system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
G. Camara-Chavez ; Equipe Traitement des Images et du Signal-ENSEA / CNRS UMR 8051, 6 avenue du Ponceau 95014 Cergy-Pontoise - France ; F. Precioso ; M. Cord ; S. Phillip-Foliguet
more authors

The actual generation of video search engines offers low-level abstractions of the data while users seek for high-level semantics. The main challenge in video retrieval remains bridging the semantic gap. Thus, the effectiveness of video retrieval is based on the result of the interaction between query selection and a goal-oriented human user. The system exploits the human capability for rapidly scanning imagery augmenting it with an active learning loop, which tries to always present the most relevant material based on the current information. We describe in this paper, a machine learning system for interactive video retrieval. The core of this system is a kernel-based SVM classifier. The video retrieval uses the core as an active learning classifier. We perform an experiment against the 2005 NIST TRECVID benchmark in the high-level task.

Published in:

2008 15th International Conference on Systems, Signals and Image Processing

Date of Conference:

25-28 June 2008