By Topic

Combination of Wavelet snd SIFT Features for Image Classification Using Trained Gaussion Mixture Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kejun Wang ; Pattern Recognition Lab., Harbin Eng. Univ., Harbin ; Zhen Ren ; Xinyan Xiong

This paper presents an effective combination of Wavelet-based features and SIFT features. For the combined feature patches extracted from images we then adopt the PCA transformation to reduce the dimensionality of their feature vectors. And the reduced vectors are used to train Gaussian Mixture Models (GMMs) in which the mixture weights and Gaussian parameters are updated iteratively. We performed the method on Caltech datasets and compared the results with several other methods. It shown that the combination of salient feature vectors and GMM gives a much better improvement in image classification.

Published in:

Intelligent Information Hiding and Multimedia Signal Processing, 2008. IIHMSP '08 International Conference on

Date of Conference:

15-17 Aug. 2008