By Topic

Monolithically integrated InGaAsP/InP composite-cavity distributed feedback lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Liou, K.Y. ; AT&T Bell Lab., Holmdel, NJ, USA ; Koren, U. ; Koch, T.L. ; Chandrasekhar, S.
more authors

Linewidth reduction to 1 MHz for monolithically integrated extended-cavity DFB lasers that are designed to achieve high optical coupling to a low-loss extended cavity is described. Since a high-efficiency extended cavity at the same time degrades the frequency-modulation (FM) response, an active gain section is integrated at the end of the extended cavity, and its use as a modulator section that maintains a flat FM response at 0.7 GHz/mA is shown. The linewidth and FM characteristics of this DFB extended-passive/active-cavity laser are compared to those of the conventional DFB extended-passive-cavity laser and a two-section DFB laser.<>

Published in:

Photonics Technology Letters, IEEE  (Volume:1 ,  Issue: 12 )